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ABSTRACT

‘We consider the processing of digital library queries, con-
sisting of a text component and a structured component in
distributed environments. The text component can be pro-
cessed using techniques given in previous papers such as (7,
8, 11). In this paper, we concentrate on the processing of the
structured component of a distributed query. Histograms
are constructed and algorithms are given to provide esti-
mates of the desirabilities of the databases with respect to
the given query. Databases are selected in descending order
of desirability. An algorithm is also given to select tuples
from the selected databases. Experimental results are given
to show that the techniques provided here are effective and
efficient.

Keywords

k nearest neighbors, database selection, distributed databases,
query processing.

INTRODUCTION

As pointed out in [3, 4], it is of great interest to find the
k nearest neighbors, i.e., the k tuples in a database table
which best match a given user query. If the table contains
records that describe library items such as books, maga-
zines and papers, then the problem becomes finding the k
best matching items of a given query. Current commercial
relational databases systems do not support the processing
of such queries. Techniques for processing such queries in a
centralized environment have recently been proposed by [3,
4). In this paper, we examine the processing of these queries
in large-scale distributed relational databases or distributed
digital libraries, where hundreds or thousands of databases
exist. Specifically, given a query which requests the k near-
est neighbors from many databases, we propose a method

1.
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to determine the databases which are likely to contain the
desired results. This is of special interest in the Internet
environment where there are numerous sites providing data
about the same topic.

A straightforward way to process a nearest neighborhood
query in a distributed environment is to send the query to
all databases. At the site of each database, the k local near-
est neighbors are returned. The returned results from the
different sites are then merged at a common site to produce
the overall k nearest neighbors for the query. This strategy
is not efficient if the number of databases is large because
most of them probably won’t contain any of the desired k
tuples. For example, if £ = 20 and the number of databases
is 200, then at least 180 of the databases won’t be useful for
this query. This straightforward method incurs unnecessary
cost to send the query to the useless sites and unnecessary
cost to process the query in these sites. Furthermore, when
these sites return their retrieval results to the common site,
there is further waste of communication and local processing
resources.

In this paper, we propose a method to identify the databases
which are likely to be useful for processing any given query
and to determine the tuples from each useful site which
are necessary for answering the query. In this way, both
the communication cost and the local processing costs are
saved. One common characteristic of these k nearest neigh-
bors queries is that it is not necessary to obtain all the k
nearest neighbors; it is often sufficient to get most of the
k neighbors. Experimental results are provided to demon-
strate that most of the k nearest neighbors (85% to 100%)
are obtained using our approach. An average accuracy rate
of 94.7% is achieved when the 20 closest neighbors are de-
sired. To the best of our knowledge, this is the first paper
on the processing of nearest neighbors queries in distributed
relational databases.

ExaMpLE 1. Suppose each Computer Science Department
maintains an online technical report database (see [6, 13]
for more information about CS technical report libraries).
Each database has a table that contains information about
each report published by the department. Suppose each
report has a title and a publication date, among other pos-
sible information fields. Consider the query @ “Find the
10 most similar reports published around 1998 on the topic
‘digital library’ ”. This query has two components. The
first component is about the topic “digital library” and is
treated as a textual query instead of a character string con-
dition (as a textual query, it can match “libraries of digital
video” and even “library” to a less extent). This component
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can be matched against the title field with each title being
treated as a document. Methods for selecting potentially
useful databases for textual queries in distributed environ-
ments are given in various papers such as [7, 8, 11]. In [11},
an intermediate result of processing such a text query is a
ranking of the databases in descending order of similarity.
Each database is associated with a similarity (which is an
inverse of distance) with respect to the query. The second
component of the query is “around 1998” and can be consid-
ered as a structured condition. Reports published in 1998
satisfy this portion of the query exactly, with distance =
0. Reports which are published other than 1998 are at some
distance away from the query condition; the further the year
is away from 1998, the bigger the distance is.

In this paper, we provide techniques for processing this
type of query conditions (i.e., structured conditions). Again,
databases are ranked in descending order of distance with a
distance associated with each database. By combining the
techniques used for the above two types of query conditions
(i.e., the textual condition and the structured condition), it
is possible to process query @, by ranking databases in as-
cending order of distance (or descending order of similarity).
|

Note that query Q in the above example can be consid-
ered as a typical digital library query, containing conditions
against both textual and structured data. Thus, queries
used in large-scale distributed digital libraries can be pro-
cessed efficiently using our method.

The rest of the paper is organized as follows. In Section 2,
several examples of the k nearest neighbors queries in rela-
tional database systems are provided. In Section 3, methods
for determining which databases to search for a given query
are provided. Experimental results are given to demonstrate
the efficiency and the effectiveness of the methods in Section
4. Conclusion and related works are provided in Section 5.

2. MOTIVATING EXAMPLES OF
K-NEAREST NEIGHBORS

In this section, we provide a few examples to illustrate the
use of the k nearest neighbors queries. While such queries
are widely used in text databases, they are rather unusual
in relational databases but are gaining importance. Their
interpretations are by no means standard and are applica-
tion dependent. Due to their different interpretations and
applicabilities, we classify these queries into three different
types. We also provide “distance” functions which may be
suitable for the three different situations.

(a) Standard k-nearest neighbors queries

Given a relation R(A1,..., Am), where the A’s are the at-
tributes of the relation and a query Q(qi, ..., gm ), where g; is
a condition on attribute A;, i = 1,...,m, a distance function
d such as the Fuclidean distance or the Manhatitan distance
can be defined such that a distance d(Q, ) can be computed,
where t = (t1,...,tm) is a tuple in R. The distance is a mea-
sure on how well the tuple t satisfies the query Q.

ExampLE 2. Consider a relation about used cars. Some
of the attributes in this relation are price, p, and number of

miles driven, m4. Suppose a user is interested in finding a -

used car satisfying his requirements on these two attributes.
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He/she can then submit the following SQL-like query.

Select C.id, C.p, C.mgq
From Used-car C
Where C.p = 2000 and C.my = 100000

There may not be a tuple satisfying the given conditions
or there can be too many tuples satisfying the conditions
but they are not ordered in a way that the user can easily
choose the suitable ones. In the former case, the user’s de-
sire to find a suitable car is not satisfied. In the latter case,
the user is overwhelmed with too many tuples. The remedy
is to have a distance function f such that a distance can
be computed between the query, Q(p = 2000, my4 = 100000)
and each tuple t. Then the tuples are ordered in ascending
order of distance. Finally, the k tuples having the smallest
distances are presented to the user, where k is an integer
specified by the user. This may be indicated as follows.

Select C.id, C.p, C.mq (10)

From User-car C

Where C.p = 2000 and C.m4 = 100000
Order by Distance f

Here, the 10 nearest neighbors are to be given to the user,
where the distance function is f. W

Although the above example is reasonable, there are rooms
for better interpretations. First, if a car has an additional
10,000 miles, it may still fit the user’s need. But, if the car
costs an additional $10,000, it will definitely not be suit-
able to the user. This can be remedied by normalizing the
attribute value of each tuple by the corresponding query at-
tribute value for each attribute. For example, if a tuple has
price and number of miles driven given by (2.3k, 110, 000),
then the percentage differences in the two attributes are
(0.3k/2k,10,000/100,000) = (15%,10%). For the rest of
this paper, we shall use the percentage difference instead of
the absolute difference. Another aspect which may better
conform to the user’s intention is that each attribute may
affect the user differently. For example, price may be twice
as important to the user than the number of miles driven.
Such a desire can be expressed by modifying the “Where
condition” in the above query to be

C.p = 2000 (I1)
and C.mg = 100000 (I2)

where I1 and 12 are two numbers indicating the relative im-
portance of the two attributes to the user. If I1 = 2 and 12
= 1, then price is twice as important to the user than the
number of miles driven.

If the Manhattan distance is used, the “distance” due to
the ith attribute, d;, is given by [£; —gi|/qi* I; and the overall

distance due to multiple attributes is Z [ti —gi|/qi*I;. If the

Euclidean distance function is used, then d; = ((t;—q)/q:)**

I; and the overall distance is \/Z((t; —qi)/q)? * L.
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(b) Generalized “distance” k-nearest neighbors
queries

In the above case, a car costing $1.5k is at the same dis-
tance as another car costing $2.5k relative to the query con-
dition of $2k, though the former car with the same mileage
as the latter is likely to be more desirable to the user. To
achieve this effect, the “distance” function is adjusted to
permit negative values. For example, the value of $1.5k has
a negative “distance” of (1.5k — 2.0k)/2.0k = —25%; while
the value of $2k has a distance of 0% with respect to the
query condition of $2k. In deciding the nearest neighbors of
a query, the tuples are sorted in ascending order of distance,
with negative distances before positive distances and highly
negative distances before slightly negative distances.

If the Manhattan distance function is used, d; = |t; —
q,'l/q,' * I, if t; > ¢i; otherwise, d; = —|t,' - q,'l/q,' * I;. If the
Euclidean distance is used, then d; = ((t; —¢:i)/q:)® * I, if
t; > ¢i; otherwise, di = —((t; — q:)/qi)? * I;. Again, if the
Euclidean distance is used and when all attributes are con-
sidered, the distances due to the individual attributes are
summed and then the square root is taken. When a “dis-
tance” is negative, then the absolute value is taken before
the square root is performed and then the negative sign is
added back in.

(c) Two sided generalized “distance” k-nearest neigh-
bors queries

Suppose we are interested in seeking an airplane ticket
from Chicago to New York City. The attributes of interest
could be the price and the time of departure. For the time of
departure, we may specify a range of time which is accept-
able, for example from 3pm to 6pm. Any time within the
range will incur a distance of 0, but a time outside the range
incurs a positive distance. As indicated before, we are inter-
ested in the percentage difference in each attribute. Thus,
the denominator of the distance function for normalization
due to time is set to be the mid-point, i.e., 4.5pm in the
above example. This is to ensure that one hour deviation
from either side outside the range incurs the same distance.
For example, a 2pm departure time incurs a percentage dis-
tance of 1/4.5. Recall that for each attribute there is an
importance factor. This can be set to eliminate the effect
of where the mid-point lies. For example, the importance
factor can be set to be I; *m;, where m; is the mid-point of
the interval (equal to 4.5 in the above example), and I; is
the relative importance of the ith attribute. With these pa-
rameter values, the mid-point m; will be cancelled out from
both the numerator and the denominator.

Let a range (l;,u;) be specified for the ith-attribute. Let
m; be the mid-point in the range, i.e., (u; — [;)/2. If the
Manhattan distance is used,

if ti >
ifli>t;
if ti isin (I, w)

[ti — wil/mi * I,
|l.' - t.~|/m,~ * I,',
0,

If the Euclidean distance is used,

d;

((ti —w)/ma)? * L, if ti > w
(i = ti)/mi)? * I, if L >t
0, if ti is in (i, ui)

d;
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In the remaining part of this paper, we shall concentrate
on these three types of nearest neighbors queries. For each
type, we shall utilize the “Euclidean distance” function and
the “Manhattan distance” function (in the case of the gen-
eralized distance neighbors queries, negative “distance” may
arise.)

3. DECIDING DATABASES TO SEARCH

Our aim is to retrieve the k nearest neighbors for a given
query. This is equivalent to find the k tuples which have
the smallest distance from the query. This needs to be done
in a distributed environment with many databases. In this
paper, we assume that there is one relation in each database
and each database is located at a different site. For the
remaining part of this paper, “relation” and “database” will
be used interchangeably.

To facilitate the identification of the k nearest neighbors
for a given query, we store for each relation a representative
which consists of a histogram for each attribute. These rep-
resentatives are stored at a central site where user queries
are answered (if processing of user queries is desired at ev-
ery site, then these representatives need to be replicated and
stored at every site). When a user query is received, the at-
tributes specified in the query are identified. Based on the
histogram on each such attribute, an estimate is made on the
desirability of each database with respect to the query. The
databases are then ranked with respect to their desirability.
Then, they will be searched in descending order of desirabil-
ity. Tuples from the selected databases are retrieved in such
a way that if the databases are ranked optimally, then all
the k nearest neighbors will be retrieved.

In Section 3.1, the histograms are discussed. In Section
3.2, the criterion for ranking databases optimally with re-
spect to a given query is provided. The criterion is simply
that for each database, the distance of the nearest neighbor
to the query in the database is obtained and databases are
ranked in ascending order of the distances of the nearest
neighbors in all databases. This guarantees optimal ranking
of databases. In Section 3.3, a generating function is intro-
duced to provide an estimate of the distance of the nearest
neighbor for each database. In Section 3.4, an algorithm to
determine which tuples from each selected database to be
returned to the user is provided.

3.1 Histogram Construction

Two methods for constructing a histogram for each at-
tribute are sketched below. They are the Simple Interval
Construction method and the Greedy Merge method.

(a) Simple Interval Construction Method

For each attribute, the range of values is partitioned into
subranges of equal width. For each subrange, a frequency
count which gives the number of tuples which have values
within the subrange is kept. For example, a histogram for
the mileages of cars can be as shown in Table 1. If a subrange
has too many tuples, then it can be divided into smaller sub-
ranges of equal width. For example, the subrange [40k, 50k)
may be partitioned into smaller subranges [40k, 45k) and
[45k, 50k) and within each smaller subrange, the number of
tuples is kept.
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Miles #tuples
[0,10k) 200
10k,20k) 150
20k,30k) 170
30k,40k) 500
40k,50k) 1000

Table 1: A Histogram for Car Mileages

From the histogram in Table 1, it can be seen that if there
are 10,000 tuples in this relation, then the probability that a
tuple with mileage in the range [0,10k) is 200/10000 = 0.02.

(b) Greedy Merge Method

This method was proposed in [10]. Initially, the range
of values is partitioned into a large number of subranges of
equal width. Asin the simple interval construction method,
the number of tuples which have values within each sub-
range is counted. Associated with each subrange, an error
of estimation can be computed. For a subrange [b,¢), the
error of estimation is given by E = 37} (¢; — ac)?, where
ci is the count (the number of tuples) at attribute value i

" and ac is the average count per attribute value in the sub-

range. In the Greedy Merge method, the counts within a
subrange are approximated by a linear function of the form
s(i) = ao + a1 *i. It can be shown that the error using the
linear function, E’ = (1 — r?)E, where r is in [—1,1] and is
the linear correlation between the counts and the attribute
values within the subrange. This implies that using a lin-
ear approximation function yields a smaller estimation error
than using the mean.

The Greedy Merge method merges 2 adjacent subranges
with the smallest estimation error. This is repeated until a
certain number of subranges is reached. At that point, the
counts for the different subranges are kept. If proper statis-
tics are kept for each subrange, then determining which ad-
Jjacent subranges to be merged can be carried out efficiently.
The details can be found in [10}.

3.2 Criterion for Selecting Databases
Optimally

DEFINITION 1. Suppose a user is interested in retrieving
the k nearest neighbors to a submitted query Q. Databases
{Di,1 < i < n} are optimally ranked in the order D1, D;..., D,,,
if for every k, there exists a t such that Dy, Da,...,D: col-
lectively contain all the k nearest neighbors of Q and each
D;,1 € i < t, contains at least one of the k nearest neigh-
bors.

The criterion to rank databases is “for each database, ob-
tain the distance of the closest neighbor in the database to
the query; then, databases are ranked in ascending order of
the distance of the closest neighbor.”

ExXAMPLE 3. Suppose there are 5 databases D1, D2, D3, D4
and Ds. Suppose that the distances of the nearest neighbors
in these databases to query @ are 0.8, 0.6, 0.3, 0.7 and 0.5,
respectively. Then, for query @, the databases should be
ranked in the order D3, D5, D2,D4,D;. B
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This guarantees that databases are ranked optimally, as
shown in the following proposition.

PROPOSITION 1. For a given query Q, if databases are
ranked in ascending order of the distance of the nearest neigh-
bor to Q, then they are ranked optimally with respect to Q.

Proof: In [14], a proposition was proved for ranking text
databases (i.e., search engines) optimally in the context of
retrieving the k& most similar documents to a given text
query across multiple text databases. The proposition in
[14] states that if databases are ranked in descending or-
der of the similarity of the most similar document in each
database, then the databases are optimally ranked. The
proof of the new proposition can essentially follow that given
for the proposition in [14]. The only major difference is that
in [14], similarities are used while in this paper, distances are
used. Since similarity and distance are inverses, the result
holds. @

3.3 Generating Function to Provide the
Estimate

For each attribute, say attribute A4;, specified in the user
query, a polynomial is constructed for the attribute of each
relation in the distributed database. This polynomial essen-
tially gives the probabilities that tuples in this database are
at various “distances” from the query condition specified on
attribute A;. Specifically, let @ = (qi,...,4i,...,gm) be the
query where g; is the value of attribute A;. Let I; be the
importance factor of the attribute in the relation. Then the
following polynomial is constructed:

9i =1 X +p2 X2 + .. +p. X% (1)

where s is the number of subranges of the ith attribute, X is
a dummy variable, p; is the probability that a tuple in the
database has a value within the subrange whose mid-point
is at weighted distance ¢; (given by d; * I;) away from query
condition g¢;, where d; is the “distance” of the mid-point of
the subrange from the query condition g¢; in the ith attribute.
Let the subrange be ([ji,u;:). Then, in the computation of
d;, it is assumed that each tuple in that subrange takes on
the mid-point value, i.e., (u;i + {;;)/2. For example, in the
car example, for the first subrange, the mid-point is 5k miles.
If the query condition is 3k, then the “generalized distance”
due to this attribute is (5k — 3k)/3k * I;, if the Manhattan
distance is used. The e’s are in ascending order.

It should be noted that the distance d; from the query
condition g;, which is associated with the subrange, is by
no means unique nor most reasonable. Instead of using the
mid-point of each subrange, the mean can be utilized. In the
Greedy Merge method, a linear function is used to estimate
the distribution of the attribute values within each subrange.
From the linear function, it is possible to estimate the mean
of the attribute values within the subrange. However, this
requires storing the coefficients of the linear function. For
simplicity, we use the mid-point of each subrange.

To summarize, for each attribute, say the ith attribute,
gi gives the distribution of the tuples of the relation which
are in increasing weighted distances from the query speci-
fication on the ith attribute (and due to the ith attribute
only). Each tuple is assumed to take on the mid-point value
of the subrange where it resides. In the polynomial, for each
term involving X, the coefficient of X is the probability that
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a tuple in the relation is at a weighted distance given by
the exponent of X away from the query condition ¢;. Sup-
pose that the query has specifications on a set of attributes
S. Then, these polynomials are multiplied together to yield
I1; g:, where the product is over all 4 in S. This product
polynomial, after arranging the terms in ascending order of
the exponent of X, gives the distribution of the tuples of
the relation in ascending order of weighted distance from
the query, taking into consideration all attributes specified
by the query. Again, in the case of Euclidean distance, the
actual distances should be the square root of the exponents
of X. When a “distance” is negative, then the absolute value
is taken before the square root is performed and then the
negative sign is added back in.

PROPOSITION 2. If the values of the tuples of a relation
R are distributed independently in the attributes specified by
the query and each value takes on the mid-point value of
the subrange where it resides, then [], g; gives the probabil-
ity distribution of the tuples of the relation R in increasing
distances from the query, afier the product is arranged in
ascending order of the ezponent of X.

Proof: Recall that p; * X in g; gives the probability of
a tuple which is at “weighted distance” e; from the query
condition ¢i, due to the ith attribute only. For another at-
tribute, say the kth attribute, p; * Xt gives the probability
of a tuple which is at “weighted distance” e; from g, due to
the kth attribute only. By the independence assumption of
the attributes, the probability that a tuple is at “distance”
e; +e; from the query based on the ith and kth attributes
only is p; * p:. The corresponding term in the product of
gi and gx is pj * p. *+ X%, Thus, after all polynomials
associated with the query are multiplied, a term of the form
a* X* gives the probability, a, that a tuple in the relation is
at distance e away from the query. (In the case of Euclidean
distance, the actual distance is the square root of e.) All
terms with the same exponent are added together. After
the terms are arranged in ascending order of the exponent,
the distribution of the tuples is given in ascending order of
distance from the query, since the exponents are the dis-
tances. i

Observations:

1. Usually attribute values are not distributed indepen-
dently. In our experimental results in Section 4, the
attributes are dependent but very reasonable results
are obtained.

2. The assumption that each attribute value takes on the
mid-point of a subrange is not realistic. However, it
does not seem to affect our experimental results sig-
nificantly.

3. The “distance” function that we use, say the “Eu-
clidean distance” (actually the square of Euclidean
distance) or the “Manhattan distance” functions, as-
sumes that the distance is the sum of the weighted
“distances” due to the individual attributes specified
in the query. This allows us to add the exponents of
X to arrive at the total distance.

4. The complexity of the algorithm (to multiply the poly-
nomials) is exponential to the number of attributes
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which are specified in the query and are needed in
the distance computation. Usually, the number of at-
tributes involved in a query is very small. For exam-
ple, in searching for a car having restrictions on price
and mileage, only two attributes are involved. Other
specification such as the make or the model of the car
are exact conditions and are not involved in distance
computations.

ExaMPLE 4. Consider the query Q(miles < 10k, price
< 15k) using the generalized Manhattan distance. Sup-
pose the histogram for mileage is that given in Table 1.
Then, the mid-points of the subranges are 5k, 15k, 25k, etc.
The generalized distances of 10k from the mid-points of
the subranges are —5k, 5k, 15k, etc. After the normaliza-
tion by 10k, the percentage differences are —0.5,0.5,1.5,
etc. Assuming that there are 10,000 tuples, the probabil-
ities of the subranges are 0.02,0.015,0.017, etc. As a re-
sult, the polynomial associated with the mileage attribute
iS gmiteage = 0.02X7%5 4+ 0.015X%% 4+ 0.017X'5 + ...

Suppose the histogram for price is given by Table 2.

Price | #tuples
[0,1k) 30
1k,2k) 80
2k,3k) 50
3k,dk) 35
4k,5k) 100

Table 2: A Histogram for Price

The generalized distances of 15k from the mid-points of
the subranges are. —14.5k, —13.5k, —12.5k, etc. After nor-
malization by 15k, the percentage differences are —0.967,
—0.9, —0.833, etc. The probabilities of the subranges are
0.003, 0.008, 0.005, etc. Thus, the polynomial associated
with the price attribute is gprice = 0.003X ~%-967 10,008 X ~-°
+0.005X 70838 4

The polynomial representing both the mileage and the
price attributes is the product of the above two polynomials
and is given by

0.00006 X ~*%7 +0.00016X ' + ...
m

The result of the product polynomial will now be used
to estimate the distance of the nearest neighbor in a given
relation. Suppose the product polynomial is

* XD dopr X2 4 o X (2)

where the exponents of X are in ascending order. Let N be
the number of tuples of the relation. Then, N * ¢; is the
expected number of tuples which are at distance d; away
from the query. If N x¢; > 1, then the distance of the
nearest neighbor in this relation is estimated to be d;; else,
we compare N * (c1 + c2) with 1. If the former is as least as
large as 1, then the distance is estimated to be d. In general,
if t is the smallest integer such that N*(c1 +co+...+¢;) > 1,
then the distance is estimated to be d;.
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ExaMPLE 5. Continue on the Example 4. The expected
number of tuples having generalized distance —1.467 from
the user query is 10000 * 0.00006 = 0.6. Since it is less
than 1, we consider the next term. The expected number of
tuples having generalized distance —1.4 from the user query
is 1.6. Since 0.6 + 1.6 > 1, the generalized distance of the
nearest neighbor is estimated to be ~1.4. W

3.4 Algorithm to Select Tuples from Ranked
Databases

Let databases be ranked in the order [D1, Ds, ..., D). Let
k be the number of tuples the user wants to see. In order to
improve the accuracy, the algorithm retrieves an additional
s tuples (i.e. retrieve k + s tuples), but return the k closest
neighbors to the user. The databases are accessed in the
order in which the databases are ranked, one at a time. (In
practice, the first few highest ranked databases may be ac-
cessed in parallel, since it is expected that they will contain
the desired tuples.) From the first and the second accessed
databases, we obtain the nearest neighbor from each of these
databases. Let the distances of these tuples be d; and da,
respectively. Let d = max{di,d2}. Tuples from these two
databases with distances < d are gathered. If the number
of such tuples is greater than or equal to (k + s), then the
k nearest neighbors are returned to the user; otherwise, the
next ranked database is accessed. In general, suppose the
first ¢ databases have been accessed and d is the maximum
value of the distances of the nearest neighbors, one from
each of these t databases. If (k + s) tuples have been re-
trieved, then the k retrieved nearest neighbors are returned
to the user; else the next database is accessed. Let di41 be
the distance of the nearest neighbor in database Diy,. If
di41 > d, then retrieve the nearest neighbor from database
D41 and tuples which have not been retrieved but with
distance < d:41 from the first ¢ databases else retrieve from
database D) tuples with distance < d. In either case, d
is updated to be max{d,d;+1}. If the total number of re-
trieved documents retrieved is (k + s) or more, then return
the k nearest neighbors to the user and terminate.

This algorithm guarantees that if the databases are ranked
optimally, then all the desired k¥ nearest neighbors of the
query will be retrieved. For a proof, see [14), where similar-
ities which are the inverses of distances are used.

4. EXPERIMENTS

In Section 4.1, we describe the data and query collection
used in the experiments. In Section 4.2, two measures of
retrieval, one reflecting the quality (i.e., accuracy) and the
other reflecting the efficiency are provided. Experimental
results are provided in Section 4.3.

4.1 Data Collection and Query Collection

Used car data were collected from Excite’s Classification
2000 website with the following conditions: Make = “any”,
Model = “all models”, Year = “1900 to 2000”, Price = “$500
to $27,000”. There are more than 50,000 tuples. The tu-
ples are arbitrarily assigned to 29 databases, without any
duplication of tuples. The queries are two attribute queries
involving price and mileage. The values associated with the
two attributes are chosen to reflect reality. Specifically, if
the mileage is high, the price is low; if the mileage is low,
the price is high. The relative degrees of importance as-
sociated with the two attributes are arbitrarily chosen. 35
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queries are generated. For each query, the three interpre-
tations as discussed in Section 2 are applied and they are:
the standard k nearest neighbors queries; the generalized &
nearest neighbors queries and the two sided-generalized k
nearest neighbors queries. For each interpretation, the two
“distance functions”, namely, the Euclidean distance and
the Manhattan distance functions are used.

4.2 Criterion of Performance

Performances are measured in two ways: the quality of the
retrieved tuples and the efficiency of retrieval. The former
is measured by the number of the tuples which are retrieved
and are among the actual k¥ nearest neighbors divided by
k. If the quantity is 100%, then all of the k nearest neigh-
bors are retrieved. The higher the percentage, the higher
the quality of retrieval is achieved. The second quantity
measures the efficiency and is the ratio of the number of
databases searched to the actual number of databases con-
taining the k nearest neighbors. If the percentage is 100%,
then the number of databases accessed is the same as the
number of databases containing the k nearest neighbors al-
though not necessarily the same set of databases is accessed.
A value exceeding 100% indicates inefficiency. The lower the
percentage, the higher the efficiency is achieved. However,
any value in this measure below 100% indicates the quality
of retrieval is also below 100%. Ideal retrieval would have
both measures equal to 100%.

4.3 Experimental Results

The two methods of constructing histograms, i.e., the Sim-
ple Interval Construction method and the Greedy Merge
method are employed. For each method, the parameter
s = 20%k, i.e., whenever the user wants to obtain the k
closest neighbors, an additional 20% of the tuples are re-
trieved by our algorithm but only k tuples are returned to
the user.

# tuples desired | Accuracy | Efficiency
10 0.86 0.94
20 0.90 0.88
30 0.90 0.90

Table 3: Results based on Standard Manhattan dis-
tance, Simple Interval

# tuples desired | Accuracy | Efficiency
10 0.86 0.93
20 0.92 0.92
30 0.93 0.94

Table 4: Results based on Standard Manhattan dis-
tance, Greedy Merge

Tables 3-14 give the experimental results of the three
types of query interpretations, each with the Euclidean dis-
tance and the Manhattan distance functions. A summary
of the results is given as follows.

1. For the Simple Interval Construction Method, the ac-
curacy ranges from 85% to 98%. For the Greedy Merge



# tuples desired | Accuracy | Efficiency
10 0.85 0.93
20 0.88 0.90
30 0.90 0.90

Table 5: Results based on Standard Euclidean dis-
tance, Simple Interval

# tuples desired | Accuracy | Efficiency
10 0.86 0.94
20 0.90 0.92
30 0.91 0.92

Table 12: Results based on Two-sided Manhattan
distance, Greedy Merge

# tuples desired | Accuracy | Efficiency
10 0.94 1.06
20 0.93 1.04
30 0.92 1.07

# tuples desired | Accuracy | Efficiency
10 0.96 1.08
20 0.97 1.12
30 0.97 1.10

Table 6: Results based on Standard Euclidean dis-
tance, Greedy Merge
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# tuples desired | Accuracy | Efficiency
10 0.93 1.12
20 0.93 1.24
30 0.96 1.06

Table 7: Results based on Generalized Manhattan
distance, Simple Interval

# tuples desired | Accuracy | Efficiency
10 1.00 1.00
20 1.00 1.14
30 0.99 0.98

Table 13: Results based on Two-sided Euclidean dis-
tance, Simple Interval

Method, it ranges from 86% to 100%. The average ac-
curacy rate for retrieving the top 20 tuples by the Sim-
ple Interval method, averaged over the 6 interpreta-
tions of the “distance” functions, is 93.5%. The corre-
sponding accuracy rate for the Greedy Merge method
is94.7%. Thus, the Greedy Merge method yields slightly
higher accuracy than the Simple Interval Construc-
tion Method. However, there are slight deteriorations
for the two-sided Manhattan distance and the two-
sided Euclidean distance. Clearly, if both the his-
tograms constructed by the Simple Interval Construc-
tion Method and the histograms constructed by the
Greedy Merge Method are kept, then we can apply
the former histogram for the two-sided Manhattan dis-

Table 8: Results based on Generalized Manhattan
distance, Greedy Merge

# tuples desired | Accuracy | Efficiency
10 0.95 1.05
20 0.95 1.23
30 0.97 1.14

Table 9: Results based on Generalized Euclidean
distance, Simple Interval

tance queries and for the two-sided Euclidean distance
queries and the latter histogram for the other 4 types
of queries to yield the best results.

# tuples desired | Accuracy | Efficiency
10 0.94 1.03
20 0.93 1.08
30 0.92 1.08

Table 14: Results based on Two-sided Euclidean dis-
tance, Greedy Merge

# tuples desired | Accuracy | Efficiency
10 1.00 1.00
20 1.00 1.21
30 0.99 1.05

Table 10: Results based on Generalized Euclidean
distance, Greedy Merge

# tuples desired | Accuracy | Efficiency
10 0.97 1.11
20 0.98 1.12
30 0.97 1.09

2. For the generalized and the two-sided queries, the ac-
curacy rates are over 90% and there is not much room
for improvement; for the standard queries with the
Greedy Merge Method, the accuracy rates range from
86% to slightly above 90%. Thus, it may be desirable
to have a 5% improvement.

3. For efficiency, the average worst case is 1.24, meaning
that in the worst case an additional 24% of databases
need to be accessed. For most situations, the efficiency
rates are between 90% and 100%. Thus, there is not
much room for improvement.

Table 11: Results based on Two-sided Manhattan
distance, Simple Interval

5.

CONCLUSION AND RELATED WORKS

The work reported here are extensions from the following

works:
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1. It extends the processing of the top-k queries from cen-
tralized relational databases [3, 4] to distributed rela-
tional databases. We also utilize “distance” functions
which are suitable for different applications.

2. It modifies the technique of processing text queries
in distributed document databases to be applicable
to distributed relational databases. In document pro-
cessing environment, the number of keywords or terms
is very large and usually exact matching of terms is
required. In relational databases, the number of at-
tributes in a relation is usually rather small. Two dis-
tinct values of the same attribute are separated by a
“distance”; the further the separation of the two val-
ues the larger the distance. Due to these differences,
the “generating function” technique in [12] is modified
to be applicable in this environment.

The histograms that we utilize to select databases (sites)
to search for a given query are rather primitive. But it has
the advantage of being simplistic and space efficient. It may
be possible to have slightly higher accuracies by utilizing the
linear estimation function within each subrange to estimate
the mean of attribute values within the subrange [10] and
then use the mean to estimate the distance of a tuple in the
subrange from the query condition.

The experimental results provided here show that the
methods we employ in retrieving the k nearest neighbors
for a given query in a distributed database environment are
effective and are efficient. We also sketch how the technique
given here and our earlier technique [11} can be combined to
process digital library queries involving both text and struc-
tured data. Issues regarding the determination of attributes
which are semantically the same or related for the purpose
of interoperability across databases have been addresses in
the literature, see for example [15].
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